CHANDIGARH ENGINERING COLLEGE - CGC LANDRAN ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Assignment No: 2

Subject and Subject code: Digital System Design and BTEC-302-18

Semester: 3rd

Date on which assignment given: 04.10.2024 Date of submission of assignment: 15.10.2024

Note: Each question carries 2 marks

Course Outcome

burse Outcome				
CO 1	Apply concepts of Boolean algebra for handling logical expressions.			
CO 2	Apply working and realization of combinational logical expressions.			
CO 3	Realize working flip-flops and use them in designing of sequential circuits.			
CO 4	Apply fundamental concepts of logic families and architectural of programmable devices.			
CO 5	Use HDL programming tool for simulation of combinational and sequential circuits			

Total marks: 10

Bloom's Taxonomy Levels

L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, L6 - Creating

S. No.	Questions	Marks	Relevance to CO No.	Bloom's Level
1.	Design MOD-5 Asynchronous or Ripple Counter.	2	CO-3	L1
2.	Why do we need A/D converters? Explain the working of Dual slope A/D converter using suitable block diagram.	2	CO-4	L2
3.	a) Design a 3-bit Binary to Gray Code Converter using Programmable Logic Array.b) Explain the following characteristics of Digital Logic Families: Propagation Delay and Noise Margin	2+2=4	CO-4	L3/L2
4.	a) Explain various data types used in VHDL.b) Implement Full Adder circuit using VHDL.	2	CO 5	L2/L5